Diagnosis of diabetes by using a data mining method based on native data

Authors

  • A, Aubi Department of Computer Engineering, Islamic Azad University, Ferdows Branch,Ferdows, Iran
  • H, GHafari Department of Computer Engineering, Islamic Azad University, Ferdows Branch,Ferdows, Iran
  • I, Abediyan Department of Computer Engineering, Islamic Azad University, Ferdows Branch,Ferdows, Iran
  • I, Zabbah Department of Computer Egineering, Islamic Azad University, Torbat Heydariyeh Branch, Torbat Heydariyeh, Iran
Abstract:

Background & Aim: Detecting the abnormal performance of diabetes and subsequently getting proper treatment can reduce the mortality associated with the disease. Also, timely diagnosis will result in irreversible complications for the patient. The aim of this study was to determine the status of diabetes mellitus using data mining techniques. Methods: This is an analytical study and its database contains 254 independent records based on 13 characteristics. Data is collected by a researcher from one of the specialized diabetes centers in Mashhad. Results: After preprocessing of the obtained data, different methods of pattern recognition were applied. Using multilevel MLP neural networks, LVQ neural networks, SVM support vector and Kmeans clustering method, the mean square error (RMSE) was calculated. The correctness of each learner's performance is 94%, 92%, 96%, and 93%, respectively. Conclusion: Reducing the diagnosis of diabetes is one of the goals of the researchers. Using data mining techniques can help to reduce this error. In this study, among different protocols used for pattern recognition, SMV method displayed a significantly better performance.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

full text

Forecasting Of Tehran Stock Exchange Index by Using Data Mining Approach Based on Artificial Intelligence Algorithms

Uncertainty in the capital market means the difference between the expected values ​​and the amounts that actually occur. Designing different analytical and forecasting methods in the capital market is also less likely due to the high amount of this and the need to know future prices with greater certainty or uncertainty. In order to capitalize on the capital market, investors have always sough...

full text

Comparison of the Efficiency of Data Mining Algorithms in Predicting the Diagnosis of Diabetes

Background: Diabetes is one of the major health problems in Iran and about 4.6 million adults suffer from this disease. Poor diagnosis of this disease has caused half of this number to be unaware of their disease. In recent years, along with the use of computers in data analysis and storage, the volume and complexity of data has increased dramatically. Methods: In health organizations, data pl...

full text

Improving Data-based Wind Turbine Using Measured Data Foggy Method

The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...

full text

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  14- 1

publication date 2019-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023